Tag: dynamical systems

Criticality in Biochemical Networks

J Royal Society Interface

Researchers from our center, in collaboration with State University of New York, Binghamton University and the Instituto Gulbenkian de Ciência developed a mathematical and computational framework to understand how biochemical networks contribute to the evolvability, robustness, and resilience of biological organisms.

In a paper in the journal Journal of the Royal Society InterfaceLuis Rocha, George J. Klir Professor of Systems Science, and Drs. Manuel Marques-Pita and Santosh Manicka (who earned his Ph.D. in complex networks and systems from the Luddy School), show that a large amount of redundancy exists in how genes, proteins and other biochemical components process signals. This results in much robustness to perturbations, allowing biological systems to exist in a stable or near-critical dynamical regime, despite being composed of thousands of biochemical variables which would ordinarily result in chaotic dynamics.

The measure of effective connectivity developed by Rocha and Marques-Pita captures redundancy in automata networks and is shown in the paper to be highly predictive of dynamical regime of biochemical systems ranging from flower development to breast cancer in humans. The approach thus adds empirical validity to several  well-known hypotheses in theoretical biology: 1) that canalization adds robustness to biological development put forth by C.H. Waddington, 2) that redundancy is essential for evolvability put forth by Michael Conrad, and 3) that biological organisms exist in a near-critical dynamical regime put forth by Stuart Kauffman. The new work further connects the three hypotheses by equating canalization with redundancy, providing a  measure of effective connectivity based on dynamical redundancy, and further showing that this measure very accurately predicts the dynamical regime of biochemical networks.

You can read the article following the links in reference:

Manicka Santosh, Marques-Pita Manuel and Rocha Luis M. [2022]. “Effective connectivity determines the critical dynamics of biochemical continue reading.

Uncovering the “master switches” of biochemical networks can explain the effects of drugs in the destruction of cancer cells

Researchers from our lab, in collaboration with the Luddy School of Informatics, Computing, and Engineering, the Instituto Gulbenkian de Ciência, and Northeastern University have developed a mathematical framework that increases our ability to explain and control biochemical systems, including those involved in disease.

In a paper featured on the cover of the journal Proceedings of the National Academy of Sciences (PNAS), Professor of Informatics Luis Rocha and Alexander Gates (who earned his Ph.D. in complex networks and systems from the Luddy School), introduce an effective graph that can capture nonlinear logical redundancy present in biochemical network regulation, signaling, and control.

Rion Correia (a member of the CSBC lab, who also earned his Ph.D. in complex networks and systems from the Luddy School and Xuan Wang, a current Ph.D. candidate, and member of the lab) are also working on the project. Together, the authors demonstrate the utility of the approach with computational models of human cancer cells, showing that the effective graph reveals why some cancer medications are more effective than others in killing breast cancer cells.

You can read the full details via the press releases below:

Luddy Press Release

Instituto Gulbenkian de Ciência Press Release

You can read the article here:

https://www.pnas.org/content/118/12/e2022598118

*Those interested in contacting the authors should do so directly, via the links provided above.… continue reading.

Awards at CCS 2015

Optimized-IU_poster_5_botsThe CNetS poster “The Rise of Social Bots in Online Social Networks” by Emilio Ferrara, Onur Varol, Prashant Shiralkar, Clayton Davis, Filippo Menczer, and Alessandro Flammini won a Best Poster Award at CCS 2015. The poster was presented by Clayton Davis. The results will also appear in the paper “The Rise of Social Bots” to be published in Comm. ACM (in press, preprint).

The paper “Modularity and the Spread of Perturbations in Complex Dynamical Systems” by Artemy Kolchinsky, Alexander J. Gates and Luis M. Rocha, and the poster “Information Theoretic Structures of the French Revolution” by Alexander Barron, Simon DeDeo and Rebecca Spang won additional awards.

Finally, our former postdoctoral scientist Bruno Gonçalves (now tenured faculty member at Aix-Marseille Université) received a Junior Scientist Award from the Complex Systems Society for his contributions to the study of human social behavior from large-scale online attention and behavioral data. This is the second Junior Scientist Award for CNetS (the first was won by Filippo Radicchi).

Congratulations to the CNetS team!

  … continue reading.